Cookie Consent

I use cookies to understand how my website is used. This data is collected and processed directly by me, not shared with any third parties, and helps us improve our services. See my privacy and cookie policies for more details.

Tagged with: #five-pillars

Posts tagged with #five-pillars examine the foundational capabilities organisations must develop across governance, infrastructure, operations, value, and culture to drive effective AI adoption and maturity.

Rethinking Business Cases in the Age of AI: Finding High-Value AI Opportunities

Llantwit Major | Published in AI and Board | 15 minute read |    
A diverse executive team in a modern boardroom reviews a large digital screen displaying a network map of interconnected business processes, with glowing nodes highlighting high-value AI opportunity areas. Surrounding dashboards present analytics on process complexity, strategic alignment, and implementation feasibility. Team members are engaged in discussion, each with laptops showing performance data. (Image generated by ChatGPT 4o).

Finding high-value AI opportunities requires looking beyond the obvious. While most organisations gravitate toward trendy applications like chatbots, the most impactful AI initiatives often lie in less visible but more strategically significant processes. By applying a structured evaluation approach that examines process characteristics, strategic alignment, and implementation feasibility, boards can identify AI investments that deliver transformative value across multiple business dimensions. This systematic method ensures scarce resources target opportunities with the greatest potential impact rather than those with merely the highest visibility or short-term appeal.


Rethinking Business Cases in the Age of AI: Creating the Foundation

Seattle | Published in AI and Board | 14 minute read |    
A business team collaborating around a modern table with holographic displays showing five interconnected building blocks that form a complete AI business case evaluation structure. (Image generated by ChatGPT 4o).

Building on my previous thoughts about why traditional business cases fail for AI investments, this article explores what I consider to be the essential building blocks for a more effective evaluation approach. This foundation provides boards with the tools to assess AI’s unique value creation patterns while maintaining financial discipline - helping leaders confidently navigate investment decisions that conventional models simply cannot adequately evaluate.


Rethinking Business Cases in the Age of AI: What Boards Need to Know

London | Published in AI and Board | 11 minute read |    
A group of business professionals in a futuristic Boardroom analyse AI investment data, with glowing holographic charts, ROI metrics, dollar signs, and an upward-trending arrow pointing toward a central “AI” node, symbolising growth and financial impact in the age of artificial intelligence. (Image generated by AI).

In today’s AI-driven landscape, traditional business case methods fall short when evaluating AI investments. Drawing from my experience developing AWS’s cloud business case tools, I explore why conventional ROI models struggle with AI’s parallel, multi-speed adoption patterns. Unlike cloud’s sequential journey, AI initiatives exist simultaneously across different maturity stages, creating valuation challenges that standard metrics can’t capture. Boards need new evaluation approaches that account for AI’s diverse cost structures, varying timelines for returns, and how investments in one area often enable value in entirely different parts of the business.


Upskilling for the AI Era: Building a Future-Ready Workforce

London | Published in AI and Board | 15 minute read |    
A conceptual digital illustration showing a workforce transitioning from traditional learning to AI-driven training — with one side depicting analog tools and classroom settings, and the other featuring holographic interfaces and futuristic technology. (Image generated by AI)

As I discussed in my article on building and managing AI-capable teams, organisations face a critical challenge in acquiring the right talent for AI transformation. This reminds me of the early days of cloud adoption, when I advised enterprises on their migration strategies. Back then, I witnessed the same scramble for scarce talent, which led me to advocate strongly for upskilling existing teams rather than relying solely on external hiring.


Navigating the AI Regulatory Maze: A Boardroom Survival Guide

Llantwit Major | Published in AI and Board | 14 minute read |    
Illustration of a maze split into two halves: one side representing traditional regulatory complexity with stone walls and paperwork, and the other depicting modern AI innovation with futuristic digital pathways. Board members strategically stand in the centre, navigating between regulation and AI. (Image generated by ChatGPT 4o)

The EU AI Act, which came into force on August 1, 2024, establishes significant penalties for non-compliance, including fines of up to €35 million or 7% of global annual turnover for serious violations. As regulatory frameworks for artificial intelligence rapidly evolve worldwide, Boards face a new imperative: navigating complex compliance requirements while maintaining the innovation speed necessary to compete.


From Shadow AI to Strategic Asset: Building Your AI Centre of Excellence

London | Published in AI and Board | 16 minute read |    
The image shows a modern business setting where AI is seamlessly integrated into operations, enhancing productivity while being governed by ethical guidelines. Executives collaborate with a digital assistant, with subtle guardrails symbolizing responsible AI use in a professional and balanced environment. (Image generated by ChatGPT 4o)

In my previous articles about the AI Stages of Adoption and the Five Pillars of AI maturity and capability, I briefly touched on the role of the AI Centre of Excellence (AI CoE). Since publishing those pieces, I’ve spoken with numerous Boards and business leaders about AI adoption and the importance of board-level AI governance. A recurring question emerges in almost every conversation: “What are the practical steps to establishing an AI CoE in our business?”


Increasing AI Maturity: Navigating the AI Stages of Adoption with the Five Pillars

Llantwit Major | Published in AI and Board | 9 minute read |    
A futuristic digital painting depicting the increasing maturity of AI. A glowing blue bridge symbolises progress, supported by five distinct pillars representing different stages of AI development. The left side of the image is darker, illustrating early AI with basic automation, while the right side transitions into an advanced AI-powered city, illuminated with intricate blue light networks, symbolising intelligence and connectivity (Image generated by ChatGPT 4o).

In my previous article on the AI Stages of Adoption (AISA), I outlined how organisations progress through their AI journey—from Experimenting to Adopting, Optimising, Transforming, and ultimately Scaling. Since publishing that piece, many readers have asked the same follow‐up question: “How do we know when we’re truly ready to move from one stage to the next?”